

DESCRIPTION

TOA introduces a new range of ceiling-mounted speakers that have been designed and engineered to overcome limiting factors that have been associated with conventional ceiling-mount speakers. Most noticeable has always been the high-frequency rolloff that resulted from limited speaker dispersion characteristics. TOA's new ceiling speaker range provides well-balanced audio reproduction without treble attenuation over an expanded listening area thanks to the extra-wide dispersion characteristics that are part of the overall speaker design. Perceived speaker directionality and beaming tendencies are minimized, resulting in a natural, well-balanced sound over a wide area at all levels. Conventional speakers exhibit high frequency rolloff characteristics as the distance between speaker and listener increases. However TOA believes that an ideal ceilingmounted speaker's response characteristics should include wide dispersion and non-frequency dependent directionality and this new ceiling speaker series proves that.

FEATURES

- Designed to blend into ceilings with a smooth, low-profile design.
- Extra ease of use and higher cost-effectiveness with the metal "back can" enclosure for the speaker rear. (F-122C, F-2352C, F-2852C, F-2322C models)
- Minimal high frequency rolloff allows clear and wellbalanced sound reproduction over a wide listening area.
- Quick and easy installation to precisely mount speaker onto ceilings and walls. Rotating front grille also installs quickly and conveniently.
- The Electronic Controller (AC-120) option is required to provide increased control of the F-122C's speaker response.

WIDE-DISPERSION FLUSH-MOUNT CEILING SPEAKER

Delivering a new level of audio performance in ceiling-mounted speakers.

Expanded listening area coverage thanks to the extra-wide dispersion characteristics of TOA's ceiling speakers makes it possible to utilize fewer speakers to cover a desired area, allowing more cost-effective installations.

Designed for higher power (60W) applications in locations having higher ceilings that are in the range of 3 to 6 meters.

- Equipped with back can meeting heat-resistant specifications.
-Equipped with a diffuser for wide dispersion of high frequencies.

SPL vs. Frequency

Beamwidth vs. Frequency

Impedance vs. Frequency

Directivity Factor vs. Frequency

Polar Response

$-{ }^{8000 \mathrm{~Hz}}$
-----6300 Hz
---500 Hz

A cost-effective full-range speaker that is ideal for most ceiling sound requirements.
(recommended 2 to 4 m)

- Equipped with back can meeting heat-resistant specifications.
-Flat front panel mounts flush.

SPL vs. Frequency

Beamwidth vs. Frequency

Impedance vs. Frequency

Directivity Factor vs. Frequency

Polar Response

Standard 2-way ceiling speaker for applications requiring a full range frequency response.
(recommended 2 to 4m)
-Equipped with back can meeting heat-resistant specifications.
-Equipped with a diffuser for wide dispersion of high frequencies.

SPL vs. Frequency

Beamwidth vs. Frequency

Impedance vs. Frequency

Directivity Factor vs. Frequency

Polar Response

$----{ }^{400 \mathrm{~Hz}}$
$---{ }^{315 \mathrm{~Hz}}$

----1600 Hz
---125 Hz

-8000 Hz
-------63000 Hz
--5

EQUALIZING CONTROLLED TYPE 30W/SERIESFUILI_RANGE

Optimized for use with the optional AC-120 Electronic Controller to deliver the highest quality audio in ceiling-mounted speakers as well as to tailor speaker response to suit specific installation requirements. (recommended 2 to 4 m)
\bullet Equipped with back can meeting heat-resistant specifications.
-Equipped with a diffuser for wide dispersion of high frequencies.

SPL vs. Frequency

Beamwidth vs. Frequency

Impedance vs. Frequency

Directivity Factor vs. Frequency

Polar Response

Perfect for low power use, this speaker has increased cost-effectiveness and includes a metal "back can" for greater installation ease. (recommended 2 to 4 m)
-Because there is no back can, it can be mounted in ceilings even having minimal depth.
Equipped with a diffuser for wide dispersion of high frequencies.

SPL vs. Frequency

Beamwidth vs. Frequency

Impedance vs. Frequency

Directivity Factor vs. Frequency

Polar Response

-400 Hz
----40 Hz
----315 Hz

$-----{ }^{-1600 \mathrm{~Hz}}$

-8000 Hz
-----63000 Hz
---50

Special compact model designed for low output applications.
(recommended 2 to 4 m)
-Because there is no back can, it can be mounted in ceilings even having minimal depth.
-Flat front panel mounts flush.

SPL vs. Frequency

Beamwidth vs. Frequency

Impedance vs. Frequency

Directivity Factor vs. Frequency

Polar Response

APPEARANCE AND DIMENSIONAL DIAGRAMS

F-2852C

Ceiling reinforcement ring (accessory)

Ceiling mounting

F-2322C

F-2352C

APPEARANCE AND DIMENSIONAL DIAGRAMS

F-122C

Ceiling reinforcement ring (accessory)

F-1522SC

OPTIONS

HY-BC1 Back Can

The HY-BC1 Back Can is a metal case attached to flush-mount ceiling speaker when mounted in exposed applications. The Back Can is hung from a ceiling suspension pipe.
Specifications

Finish	Surface-treated steel plate, t0.8, black, paint
Weight	$1,5 \mathrm{~kg}$
Accessory	Rubber grommet $\times 2$

HY-TR1 Trim Ring

The HY-TR1 Trim Ring allows installation of flush-mounted ceiling speakers in pre-existing ceiling panel holes which are over 200 mm in diameter. The use of 2 Trim Rings allows the speaker to be mounted in holes from 240 mm to 300 mm in diameter.

Specifications

Ceiling Hole Diameter	$\varnothing 200-\varnothing 300 \mathrm{~mm}$
Finish	Surface-treated steel plate, white, paint
Weight	500 g

HY-TB1 Tile Bar Bridge

The HY-TB1 is channel bar to be used when supporting flushmounted ceiling speakers by way of ceiling bars to prevent their full weight from being directly applied to the ceiling panel during installation. This channel bar is used in conjunction with reinforcement hardware supplied with the speaker. One complete set consists of 2 HY -TB1 bars.

Specifications

Finish	Steel plate, plating
Weight	500 g (for set of 2 bars)
Accessory	Mounting screw $\times 4$

HY-AH1 Anchor Hanging Bracket

The HY-AH1 Anchor Hanging Bracket is designed to support ceilingsuspended speakers from an anchor bolt in order to prevent the speaker's full weight from being directly applied to the ceiling panel. It is used in conjunction with reinforcement hardware supplied with the speaker.

Specifications

Finish	Steel plate, plating
Weight	700 g
Accessory	Paper pattern $\times 1$

AC-120 Electronic Controller

The AC-120 is a controller for F-122C, F-121C/121CM or F500, 600 series.

Specifications

AC Line Voltage	AC mains, 50/60Hz
Power Consumption	9W 120V version 9W 220 - 240 V version
Total Harmonic Distortion	Less than $0.05 \%\left(1 \mathrm{kHz},+4 \mathrm{~dB}{ }^{\star}\right)$
Hum and Nose	Less than -94 dB * (20Hz - 20kHz B.P.F)
Input	$+4 \mathrm{~dB} *$ 10k ohns balanced phone jack Max input level: + 20dB*
Output CH out	$+4 \mathrm{~dB}^{*} 600$ ohms balanced phone jack Max output level: +20dB*
Low out	$+4 \mathrm{~dB} * 600$ ohms balanced phone hack Max output level: +20dB* Filter: 12dB per octave Cut off frequency: $10 z$
Low Cut Center frequency	100 Hz , 6dB cut (for F-122C and F-121C)
Finish	Black
Dimensions	482.6 (W) $\times 44$ (H) x 297.5 (D)mm
Weight	3.7 kg

SPECIFICATIONS

Model No.	F-2852C	F-2322C	F-2352C	F-122C	F-2352SC	F-1522SC
Enclosure	Bass reflex type				-	
Rated Input	60 W (high impedance)	$\begin{gathered} 30 \mathrm{~W} \\ \text { (high impedance) } \end{gathered}$			6W (high impedance)	
Power Handling Capacity	Continuous pink noise: 90W(8 Ω), 60W (16 $)$ Continuous program: $180 \mathrm{~W}(8 \Omega), 120 \mathrm{~W}(16 \Omega)$	Continuous pink noise: $60 \mathrm{~W}(8 \Omega), 30 \mathrm{~W}(16 \Omega)$ Continuous program:120W(8 $), 60 \mathrm{~W}(16 \Omega)$			Continuous pink noise: $9 \mathrm{~W}(8 \Omega), 6 \mathrm{~W}(16 \Omega)$ Continuous program: $18 \mathrm{~W}(8 \Omega), 12 \mathrm{~W}(16 \Omega)$	
Impedance 100V line:	$170 \Omega(60 \mathrm{~W}), 330 \Omega(30 \mathrm{~W})$ $670 \Omega(15 \mathrm{~W}), 3.3 \mathrm{k} \Omega(3 \mathrm{~W})$	$330 \Omega(30 \mathrm{~W}), 1 \mathrm{k} \Omega(10 \mathrm{~W}), 3.3 \mathrm{k} \Omega(3 \mathrm{~W}), 10 \mathrm{k} \Omega(1 \mathrm{~W})$			$\left\|\begin{array}{l} 1.7 \mathrm{k} \Omega(6 \mathrm{~W}), 3.3 \mathrm{k} \Omega(3 \mathrm{~W}) \\ 10 \mathrm{k} \Omega(1 \mathrm{~W}), 20 \mathrm{k} \Omega(0.5 \mathrm{~W}) \end{array}\right\|$	$1.7 \mathrm{k} \Omega(6 \mathrm{~W}), 3.3 \mathrm{k} \Omega(3 \mathrm{~W})$
70V line:	83 (60W), 170Ω (30W) 330 (15W), $670 \Omega(7.5 \mathrm{~W})$ $3.3 \mathrm{k} \Omega(1.5 \mathrm{~W})$	$170 \Omega(30 \mathrm{~W}), 330 \Omega(15 \mathrm{~W}), 1 \mathrm{k} \Omega(5 \mathrm{~W}), 3.3 \mathrm{k} \Omega(1.5 \mathrm{~W}), 10 \mathrm{k} \Omega(0.5 \mathrm{~W})$			$\begin{array}{\|c\|} \hline 830 \Omega(6 \mathrm{~W}), 1.7 \mathrm{k} \Omega(3 \mathrm{~W}) \\ 3.3 \mathrm{k} \Omega(1.5 \mathrm{~W}), 10 \mathrm{k} \Omega(0.5 \mathrm{~W}) \\ 20 \mathrm{k} \Omega(0.25 \mathrm{~W}) \end{array}$	$\begin{gathered} 830 \Omega(6 \mathrm{~W}), 1.7 \mathrm{k} \Omega(3 \mathrm{~W}) \\ 3.3 \mathrm{k} \Omega(1.5 \mathrm{~W}) \end{gathered}$
25V line:	$\begin{array}{c\|} \hline 83 \Omega(7.5 \mathrm{~W}), 170 \Omega(3.7 \mathrm{~W}) \\ 330 \Omega(1.9 \mathrm{~W}), 670 \Omega(0.9 \mathrm{~W}) \\ 3.3 \mathrm{k} \Omega(0.2 \mathrm{~W}) \\ \hline \end{array}$	$170 \Omega(3.7 \mathrm{~W}), 330 \Omega(1.9 \mathrm{~W}), 1 \mathrm{k} \Omega(0.6 \mathrm{~W}), 3.3 \mathrm{k} \Omega(0.2 \mathrm{~W}), 10 \mathrm{k} \Omega(0.06 \mathrm{~W})$			$\begin{array}{\|c\|} \hline 830 \Omega(0.75 \mathrm{~W}), 1.7 \mathrm{k} \Omega(0.4 \mathrm{~W}) \\ 3.3 \mathrm{k} \Omega(0.2 \mathrm{~W}), 10 \mathrm{k} \Omega(0.06 \mathrm{~W}) \\ 20 \mathrm{k} \Omega(0.03 \mathrm{~W}) \\ \hline \end{array}$	$\begin{gathered} \hline 830 \Omega(0.75 \mathrm{~W}) \\ 1.7 \mathrm{k} \Omega(0.4 \mathrm{~W}) \\ 3.3 \mathrm{k} \Omega(0.2 \mathrm{~W}) \\ \hline \end{gathered}$
Low (adjustable)	$16 \Omega, 8 \Omega$					
Sound Pressure Level	91dB(1W, 1m)	90dB (1W, 1m)	90dB (1W, 1m)	90dB (1W, 1m)	89dB(1W, 1m)	88 dB (1W, 1m)
Frequency Response	$60-20,000 \mathrm{~Hz}(-10 \mathrm{~dB}),$ $45-20,000 \mathrm{~Hz}(-20 \mathrm{~dB})$ at installation in $1 / 2$ free sound field (measured by installing the unit in the center of a ceiling.)	$70-20,000 \mathrm{~Hz}(-10 \mathrm{~dB})$, $50-20,000 \mathrm{~Hz}(-20 \mathrm{~dB})$ at installation in $1 / 2$ free sound field (measured by installing the unit in the center of a ceiling.)			$80-20,000 \mathrm{~Hz}(-10 \mathrm{~dB})$, $50-20,000 \mathrm{~Hz}(-20 \mathrm{~dB})$ at installation in $1 / 2$ free sound field (measured by installing the unit in the center of a ceiling.)	$65-18,000 \mathrm{~Hz}(-10 \mathrm{~dB})$, $45-20,000 \mathrm{~Hz}(-20 \mathrm{~dB})$ at installation in $1 / 2$ free sound field (measured by installing the unit in the center of a ceiling.)
Speaker Component High frequency: Low frequency:	Dome-type 16cm cone-type	12 cm cone-type	Balanced dome-type	12 cm cone-type	$\begin{aligned} & \text { Balanced dome-type } \\ & \hline \text { 12cm cone-type } \end{aligned}$	10cm cone-type
Mounting Hole	$\varnothing 250 \mathrm{~mm}$ (maximum ceiling thickness: 37 mm)	ø200(maximum ceiling thickness: 37mm)				$\varnothing 135 \mathrm{~mm}$ (maximum ceiling thickness: 37 mm)
Input Terminal	Removable locking connector with screw-down terminals (2 input terminals and 2 bridge terminals)				Push-in connector (Bridging terminal-2 branch type)	
Usable Cable	Solid copper wire: $\varnothing 0.5$ - $\varnothing 1.6 \mathrm{~mm}$ (equivalent to AWG No. 24 - 14) Stranded copper wire: $0.2-2.5 \mathrm{~mm}^{2}$ (equivalent to AWG No. 24 - 14)				600V Vinyl-insulated cable (IV wire or HIV wire) Solid copper wire; $\varnothing 0.8$ - $\varnothing 1.6 \mathrm{~mm}$ (equivalent to AWG No. 20 - 15) 7-core twisted copper wire: $0.75-1.25 \mathrm{~mm}^{2}$ (equivalent to AWG No. 18 - 17)	
Finish Enclosure:	Steel plate, plating				-	
Baffle:	Fire-resistant ABS resin (resin material grade; UL-94 V-0 or its equivalent), black					
Rim:	Fire-resistant ABS resin (resin material grade; UL-94 V-0 or its equivalent), white, paint					
Punched net:	Steel plate, white, paint					
Dust-proof bag:	-				Artificial fiber, black	
Dimensions	ø280 $\times 227$ (D)mm	ø230 x 200 (D)mm	ø230 x 229 (D)mm	ø230 $\times 229$ (D)mm	ø230 x 154 (D)mm	$\varnothing 155 \times 117$ (D)mm
Weight	5.1 kg (including mounting accessories)	3.7 kg (including mounting accessories)	3.7 kg (including mounting accessories)	3.7 kg (including mounting accessories)	1.5 kg (including panel)	1kg (including panel)
Accessories Panel:	1					
Ceiling reinforcement ring:	1				-	
Safety wire:	1				-	
Paper pattern:	1					
Option Anchor hanging bracket:	HY-AH1				-	
Back can:	-	HY-BC1				-
Tile bar bridge:	HY-TB1				-	
Trim ring:	-	HY-TR1			-	
Electronic controller:	-			AC-120C	-	

Note: The F-122C must be used with an Electronic Controller AC-120.

